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A general purpose sparse matrix parallel solver is developed primarily for solving a range
of lincar symmetric systems arising from discretization of partial differential equations on
unstructured meshs. The key point is that sparse matrices arising from finite clement and
finite diflerence methods can be easily cast into a form with certain storage structure and
communication pattern which can be standardized in a set of subroutines. The package
includes a set of subroutines for aiding users to do parallcl 1/0 to read in the mesh file,
partition file, to allocate storage for the sparse matrix and asscmble the sparse matrix
elements. The package provides a set of parallel lincar solvers, such as preconditioned bi-
conjugate gradient, the Cholesky fact orizat ion, quasi minimal residual solver, or a t wo-step
hybrid method using an incomplete Cholesky factorization to climinate the interior grid
points and using a conjugate gradient or the Cholesky factorization to solve the resulting
much smaller system consisting of grit] points along the processor boundaries, Scaling
tests on Intcl Delta up to 128 processors show that the bi-conjugate gradient method
scales lincarly with the number of processors, whercas the two step hybrid method scales
with the square root of the number of processors.

Introduction

One of the common problems in scientific and engineering computations is the con-
struction and solution of sparse cocflicient matrices of lincar systems arising from solving
partial differential equations based onunst ruct ured grids [1 ]. Many such examples occur
in analysis by finite clement, finite diflerence and finite volume methods. As the scale and
complexity of calculations grow, massively parallel computers arc increasing used in these
calculations. Here, wc describe a software package for handling these (symmetric) sparse
matrices on a massively parallel distributed memory computer. The package includes rou-
tines to handle the compact storage scheme to store the nonzero elements of the sparse
cocflicient matrix, routines to construct the sparse matrix, and a choice of several possible
method to solve the resulting linear equations. Fig.] illustrates the basic data flow chart
of the solver package.

Domain decomposition

Subdomains of the unstructured grids arc divided among processors, The subdomain
boundaries always cut through the links connecting grids, Grid points sitting on the
domain boundaries arc shared among the processors whose subdomain bounders it. in the
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finite clement language (from which the present solver package is evolved), each clement
belongs to only Onc processor, but a given nodal point may physically resided on the several
processors which share it,. In this case, the variables associated with the same point arc
present in all those processors. Fig.2 indicates how the matrix clement are splitted into
picces among the relevant processors. This matrix decomposition differs from many other
decompositions where each matrix clement belongs to a unique processor. The most clear
advantage of such a decomposition is that the matrix-vector product is easily carried out,
Wec first do a local VI == M . V., since all entries arc locally stored. This proceeds as just
like on a sequential computer. Afterwards, the only entry in VI which arc not complete arc
those for the boundary points, which can be completed by summing up all contributions
from the relevant processors which share this point. This step is called globalize(). Fig.3
sketches this matrix-vector product in more details. This decomposition has been described
previously[2-4] within the context of the finite clement method, We emphasize that this
decomposition arc also suitable for the cocflicient matrices arising from a finite difference
method. In fact, the application example given at the end of this paper is a finite difference
method solution.

Sparse matrix storage and construction

Wc used two compact storage schemes for sparse matrices. The first onc store only
nonzero matrix clements. This minimum storage scheme is convenient for the matrix-
vector product usd in conjugate gradient type of iterat ive methods. Other other is so-
called skyline profile or variable banded scheme, .i.c., on each row, we store the first
nonzero clement and every clement between the first nonzero clement and the diagonal
clement. This scheme is very convenient for Cholesky fact orizat ion, alt bough the st orage
is not really optimum: some zero clements are also stored in this scheme. Depending upon
the solution mcthod invoked to solve the linear equations, the package chose onc scheme
or a mix of the above schemnes, as discussed below.

Solution Methods

The package includes several solution methods that a user may choose to best fit the
problem at hand. ‘These methods include a preconditioned bi-conjugate gradient (PBCG)
method which can deal with both real and complex symmetric matrices; a quasi-minimum
residue (QMR) method to hand the symmetric complex matrices; a two-step hybrid method
which first do a sequential Cholcksy factorization to climinate the interior points and
then solve the resulting (mush smaller) reduced linear systems using either a parallel bi-
conjugate gradient iteration method or a parallel Cholesky factorization.

Conjugate gradient type iterative methods (include the QMR) arc particularly suited
to Solve lincar equations on parallel computers because they only involves matrix-vector
product and global sums. Matrix-vector product is easily carried out in our data dccon~-



Performance

We have completed the solver package. The solver package is applied both to a finite
clement solution of electromagnetic wave scattering from conducting sphere, and to a finite
difference solut ion to a static heat dist ribut ion problem governed by Poisson equat ion.

In Fig.4, wc plotted the scaling behavior of the solver for the finite difference solution
to a Poisson equation. Wec let the problem size scale with number of processors while
fixing 1600 grid points pcr processor, The data shown is the ratio of the time for solving
the entire problem on M processors vs. the time for solving a 1600-grid problem on one
processor. The preconditioned bi-conjugate gradient (PBCG) methods scales as N°, where
onc N comes from the matrix-vector product (sparsity reduces N°to N) and another N
comes from the order N iterations. Since N ~ M, wc expect the scaling be linear in
M, and our data clearly supports this scaling behavior. The two-step hybrid first dots
a scquential incomplete factorization on the interior points and then dots a parallel bi-
conjugatc gradient method for those boundary points. The first part remains a constant
for the fixed size per processor, and the second part deals with those boundary points
which incrcase as square root of the total points. Once the first part saturates, the total
time for the hybird method should incrcasc as /M, as our data indicated.

Conclusion

Woc have implemented a software package for constructing and solving symmetric sparse
cocflicient matrix of lincar systems arising from solving partial differential equations based
on unstructured grids. The interface of the solver is through a scries of subroutine calls,
There arc several solution methods provided for user to chosc. The scaling tests indicate
good scaling behavior of the two-step hybrid conjugate gradient - Cholesky method.
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Breakup of the Sparse Matrix A for Finite Elements
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